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Monte Carlo integration

= General tool for estimating definite integrals

Integral:
A A I = j g(x)dx

Monte Carlo estimate of I:

N
1 (fk)_

0 Eo BB B, E, & 1 Works “on average™:
E[(D] =1
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Generating samples from a
distribution

PBRT 13.3

http://www.pbr-book.org/3ed-2018/Monte Carlo Integration/Sampling Random Variables.html#



http://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration/Sampling_Random_Variables.html

Generating samples from a 1D
discrete random variable

= Given a probability mass function p(i), and the

= Procedure

1.

corresponding cdf P(1)
1
Generate u from Uniform(o,1)
Choose x; for which u

2.

= The search is usually implemented by interval bisection

P(i-1) < u < P(i)

\ CDF
______________________________ ’
l
® |
| l
® l
................ ] I l
* . .
| I | l

(we define P(0) = 0)
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Generating samples from a 2D
discrete random variable

= Given a probability mass function p; /i, j)

= Option 1:
o Interpret the 2D PMF as a 1D vector of probabilities
o Generate samples as in the 1D case
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Generating samples from a 2D
discrete random variable
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Generating samples from a 2D
discrete random variable

= Option 2 (better)

. “Column” iy is sampled from the marginal distribution,
given by a 1D marginal pmf

ORI

. “Row” j 1s sampled from the conditional distribution
corresponding to the “column” i

pI,J (iseI’ J)
pl (isel)

pJ|I (J | | :isel) —
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Generating samples from a 1D
continuous random variable

= Option 1: Transformation method

= Option 2: Rejection sampling

= Option 3: Metropolis-Hastings sampling
0 Separate lecture
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Transformation method

s Theorem Consider a random 1
variable U from the uniform
distribution U (o0, 1).

Then the random variable X
X =P 1)

has the distribution given by the edf P.

X
= To generate samples according to a given pdf p, we need
to be able to:

o calculate the cdf P(x) from the pdf p(x)
o calculate the inverse cdf P-(u)

(analytically, on paper)
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Rejection sampling in 1D

= Algorithm MAX . .
a0 Choose random u, from Uniform(a, b)
o Choose random u, from Uniform(0, MAX)

o Accept the sample if p(u,) > u,
= Return u, as the generated random number
o Repeat until a sample is accepted 0

= Theorem The accepted samples follow the distribution
with the pdf p(x).

= Efficiency = % of accepted samples
o Area under the pdf graph / area of the bounding rectangle
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Transformation method vs.
Rejection sampling

= Transformation method: Pros

= Almost always more efficient than rejection sampling (unless the
transformation formula x = P-*(u) turns out extremely complex)
= Constant time complexity. The number of random generator
invocations is known upfront (important for SW architecture).
= Transformation method: Cons
= May not be feasible (we may not be able to find the suitable form
for x = P'(u) analytically), but rejection sampling is always
applicable as long as we can evaluate and bound the pdf (i.e.
rejection sampling is more general)
= Smart rejection sampling can be very efficient (e.g. the
Ziggurat method, see Wikipedia, )
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https://en.wikipedia.org/wiki/Ziggurat_algorithm

Sampling from a 2D continuous
random variable

= Conceptually similar to the 2D discrete case

= Procedure

0 Given the joint density px y(x, y) = px(X) pyx(y | )
.. Choose x,, from the marginal pdf

Py () = [ Py (%, y) dy

-.  Choose y,,, from the conditional pdf

Py v (Xsers Y)
px (Xsel)

pY|X (yl X = sel) —
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Transformation formulas for common
cases in light transport

= P. Dutré: Global Illumination Compendium,
http://people.cs.kuleuven.be/~philip.dutre/GI/

Giobal lllumination Compendium
The Concise Guide to Global lllumination Algorithms

= PBRT, Section 13.6.

http: //www.pbr-book.org/3ed-2018/Monte Carlo Integration/2D Sampling with Multidimensional Transformations.html
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Importance sampling from the
physically-plausible Phong BRDF

= Ray hits a surface with a Phong BRDF. How do we
generate a ray direction proportional to the BRDF lobe?

= Procedure

1. Choose the BRDF component (diffuse reflection, specular
reflection, possibly refraction)

».  Sample direction from the selected component

5. Evaluate the total PDF and BRDF
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Recap: Physically-plausible Phong
BRDF

Phon Fd 0,cos @ '
ﬁ« g(a)in = Woyt) = + > ps max{ 0, cos O}
= Where

COS Hrefl = Wout * Wrefl

Wrefl = 2((‘)in : n)n — Wijp

= Energy conservation:

patps <1
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Selection of the BRDF component

float probDiffuse = max(rhoD.r, rhoD.g, rhoD.b);

float prodSpecular = max(rhoS.r, rhoS.g, rhoS.Db);

float normalization = 1.f / (probDiffuse + probSpecular);
// probability of choosing the diffuse component
probDiffuse *= normalization;

// probability of choosing the specular component

probSpecular *= normalization;

if ( uniformRand(0,1) <= probDiffuse )

generatedDir = sampleDiffuse();
else
generatedDir = sampleSpecular (incidentDir) ;

pdf = evalPdf (incidentDir, generatedDir,
probDiffuse, probSpecular);
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Sampling of the diffuse lobe

= Importance sampling with the density p(0) = cos(0) / «
0 6...angle between the surface normal and the generated ray
o Generating the direction:

_ 2
x = cos(2mry), /1 =7,
¢® = 27
. 2
0 = acos(rz) y = sin(2nry) /1 -7,

= r1,r2...uniform random variates on <0,1)
= Reference: Dutre, Global illumination Compendium
= Derivation: Pharr & Humphreys, PBRT
: 2 (sp!
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sampleDiffuse ()

// generate spherical coordinates of the direction

const float rl = uniformRand(0,1), r2 = uniformRand(0,1);
const float sinTheta = sqgrt(l - r2);

const float cosTheta = sqgrt(r2);

const float phi = 2.0*PI*rl;

// convert [theta, phi] to Cartesian coordinates

Vec3 dir (cos(phi)*sinTheta, sin(phi)*sinTheta, cosTheta);

return dir;

Here the generated direction is in the coordinate frame with the z-axis aligned
to the surface normal (i.e. the local shading frame).
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Sampling of the specular (glossy)
component

» Importance sampling with the pdf p(0_.,) = (n+1)/(27)
cos™(0)

a 0,4 ..-angle between the ideal mirror reflection of o, and
the generated ray

o Formulas for generating the direction:

2
frestion n+1
{ _ x = cos(2mr )1l -7,
¢ = 21y

|

2
1 o ] B n+1
0 = acos{rg ] hY sm(2m1)'\/1 I's

_L
_ n+l

= r1,r2...uniform random variates on <0,1)
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sampleSpecular ()

// build a lobe coordinate frame with i1ideal reflected direction = zZ-axis

Frame lobeFrame;

lobeFrame.setFromZ ( reflectedDir (incidentDir, surfaceNormal) );
// generate direction in the lobe coordinate frame

// use formulas form previous slide, n=Phong exponent

const Vec3 dirInLobeFrame = rndHemiCosN (n) ;

// transform dirInLobeFrame to local shading frame

const Vec3 dir = lobeFrame.toGlobal (dirInLobeFrame) ;

return dir;
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evalPdf

float evalPdf (Dir incidentDir, Dir generatedDir,
float probDiffuse, float probSpecular)

return
probDiffuse * getDiffusePdf (generatedDir) +
probSpecular * getSpecularPdf (incidentDir, generatedDir);

formulas from previous slides
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Variance reduction methods for
MC estimators




Variance reduction methods

= Importance sampling

0o The most commonly used method in light transport (most
often we use BRDF-proportional importance sampling)

= Control variates

= Improved sample distribution
o Stratification

o quasi-Monte Carlo (QMC)
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Importance sampling

o

4
A
A

T R x)

Iy

p(X)

0 X, XX, X,X, X, 1
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Importance sampling

m Parts of the integration domain with high value of the
integrand g are more important
0 Samples from these areas have higher impact on the result

= Importance sampling places samples preferentially to
these areas

0 i.e. the pdf p is “similar” to the integrand g

= Decreases variance while keeping unbiasedness
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Control variates

g(x)

/N

h(x)

.

OF—
g(X)-h(M

N —

0
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Control variates

Consider a function h(x), that approximates the
integrand and we can integrate it analytically:

I = fg(x) dx = j[g(x)—h(x)] dx + j h(x) dx

/

Numerical integration (MC)
Hopefully with less variance
than integrating g(x) directly.

We can integrate
analytically
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Control variates vs. Importance
sampling

= Importance sampling

o Advantageous whenever the function, according to which
we can generate samples, appears in the integrand as a
multiplicative factor (e.g. BRDF in the reflection
equation).

= Control variates

o Better if the function that we can integrate analytically
appears in the integrand as an additive term.

= This is why in light transport; we almost always use
importance sampling and rarely control variates.
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Better sample distribution

= Generating independent samples often
leads to clustering of samples

o Results in high estimator variance

= Better sample distribution => better
coverage of the integration domain
by samples => lower variance

= Approaches

o Stratified sampling
o quasi-Monte Carlo (QMC)
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Stratified sampling

= Sampling domain subdivided into disjoint areas that are
sampled independently

gx)
g(x) / \ """" |

0 x

CG III (NPGRO10) - J. Kfivanek 2015 34



Stratified sampling

Subdivision of the sampling domain Q into N parts Q,:

I = fg(x)dx—z fg(x)dx—ZIk

k=1Q,

Resulting estimator:

n 1
Istrat = Nz 9 (Xi), Xk € Qy
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Stratified sampling

= Suppresses sample clustering

= Reduces estimator variance

o Variance is provably less than or equal to the variance of a
regular secondary estimator

= Very effective in low dimension
o Effectiveness deteriorates for high-dimensional integrands
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How to subdivide the interval?

® Uniform subdivision of the interval
0 Natural approach for a completely unknown integrand g

® If we know at least roughly the shape of the integrand
g, we aim for a subdivision with the lowest possible
variance on the sub-domains

m Subdivision of a d-dimensional interval leads to N
samples

0 A better approach in high dimension is N-rooks sampling
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Combination of stratified sampling
and the transformation method
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Quasi-Monte Carlo methods (QMC)

= Use of strictly deterministic sequences instead of
(pseudo-)random numbers

= Pseudo-random numbers replaced by low-discrepancy
sequences

= Everything works as in regular MC, but the underlying
math is different (nothing is random so the math cannot
be built on probability theory)
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Discrepancy
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Stratified sampling

10 paths pe pxl |
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‘ Quasi-Monte Carlo

10 ahs per iX .
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Same random sequence for all pixels

Henrik Wann Jensen

~ A

10 paths per pixel
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Image-based lighting




Image-based lighting

= Introduced by Paul Debevec (Siggraph 98)

= Routinely used for special effects in films & games
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Environment mapping (a.k.a. image-
based lighting, reflection mapping)

Miller and Hoffman, 1984
Later, Greene 86, Cabral et al, Debevec 97, ...



Image-based lighting

= Illuminating CG objects using measurements of real light
(=light probes)

Eucaliptus [
grove

Grace
cathedral

Uffizi
gallery

© Paul Debevec



Point lighting

© Paul

Debeve



Image-based lighting

-




Image-based lighting




Image%sed lighting




Image-based lighting




Mapping

Eucaliptus grove

Grace cathedral

Debevec’s spherical ~ “Latitude —longitude” (spherical coordinates) Cube map



‘ Mapping

Uffizi gallery

St. Peter’s Cathedral

Debevec's spherical

“Latitude —longitude” (spherical coordinates)

Cube map



Sampling strategies for image based
lighting

= Technique (pdf) 1:
BRDF importance sampling

o Generate directions with a pdf proportional to the BRDF

= Technique (pdf) 2:
Environment map importance sampling

o Generate directions with a pdf proportional to L(®)
represented by the EM
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BRDF IS
600 samples

EMIS

600 samples

MIS

300 + 300 samples

‘ Sampling strategies

[ 4
Diffuse only Ward BRDF, a.=0.2

Ward BRDF, a.=0.05

[ %
Ward BRDF, a=0.01



Sampling according to the
environment map luminance

= Luminance of the environment map defines the sampling
pdf on the unit sphere

= For details, see PBRT, 13.6.7
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